Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Infect Genet Evol ; 95: 105038, 2021 11.
Article in English | MEDLINE | ID: covidwho-1433673

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversity has the potential to impact the virus transmissibility and the escape from natural infection- or vaccine-elicited neutralizing antibodies. Here, representative samples from circulating SARS-CoV-2 in Colombia between January and April 2021, were processed for genome sequencing and lineage determination following the nanopore amplicon ARTIC network protocol and PANGOLIN pipeline. This strategy allowed us to identify the emergence of the B.1.621 lineage, considered a variant of interest (VOI) with the accumulation of several substitutions affecting the Spike protein, including the amino acid changes I95I, Y144T, Y145S and the insertion 146 N in the N-terminal domain, R346K, E484K and N501Y in the Receptor binding Domain (RBD) and P681H in the S1/S2 cleavage site of the Spike protein. The rapid increase in frequency and fixation in a relatively short time in Magdalena, Atlantico, Bolivar, Bogotá D.C, and Santander that were near the theoretical herd immunity suggests an epidemiologic impact. Further studies will be required to assess the biological and epidemiologic roles of the substitution pattern found in the B.1.621 lineage.


Subject(s)
Amino Acid Substitution , COVID-19/epidemiology , Genome, Viral , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/transmission , COVID-19/virology , Colombia/epidemiology , Epidemiological Monitoring , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , Phylogeography , Protein Domains , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Severity of Illness Index
2.
Front Med (Lausanne) ; 8: 697605, 2021.
Article in English | MEDLINE | ID: covidwho-1311379

ABSTRACT

COVID-19 pandemics has led to genetic diversification of SARS-CoV-2 and the appearance of variants with potential impact in transmissibility and viral escape from acquired immunity. We report a new and highly divergent lineage containing 21 distinctive mutations (10 non-synonymous, eight synonymous, and three substitutions in non-coding regions). The amino acid changes L249S and E484K located at the CTD and RBD of the Spike protein could be of special interest due to their potential biological role in the virus-host relationship. Further studies are required for monitoring the epidemiologic impact of this new lineage.

3.
Emerg Infect Dis ; 26(12): 2854-2862, 2020 12.
Article in English | MEDLINE | ID: covidwho-940167

ABSTRACT

Coronavirus disease (COVID-19) in Colombia was first diagnosed in a traveler arriving from Italy on February 26, 2020. However, limited data are available on the origins and number of introductions of COVID-19 into the country. We sequenced the causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from 43 clinical samples we collected, along with another 79 genome sequences available from Colombia. We investigated the emergence and importation routes for SARS-CoV-2 into Colombia by using epidemiologic, historical air travel, and phylogenetic observations. Our study provides evidence of multiple introductions, mostly from Europe, and documents >12 lineages. Phylogenetic findings validate the lineage diversity, support multiple importation events, and demonstrate the evolutionary relationship of epidemiologically linked transmission chains. Our results reconstruct the early evolutionary history of SARS-CoV-2 in Colombia and highlight the advantages of genome sequencing to complement COVID-19 outbreak investigations.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Genomics/methods , Phylogeny , SARS-CoV-2/genetics , Colombia/epidemiology , Humans , Reproducibility of Results
4.
Infect Genet Evol ; 85: 104557, 2020 11.
Article in English | MEDLINE | ID: covidwho-779446

ABSTRACT

SARS-CoV-2 is a new member of the genus Betacoronavirus, responsible for the COVID-19 pandemic. The virus crossed the species barrier and established in the human population taking advantage of the spike protein high affinity for the ACE receptor to infect the lower respiratory tract. The Nucleocapsid (N) and Spike (S) are highly immunogenic structural proteins and most commercial COVID-19 diagnostic assays target these proteins. In an unpredictable epidemic, it is essential to know about their genetic variability. The objective of this study was to describe the substitution frequency of the S and N proteins of SARS-CoV-2 in South America. A total of 504 amino acid and nucleotide sequences of the S and N proteins of SARS-CoV-2 from seven South American countries (Argentina, Brazil, Chile, Ecuador, Peru, Uruguay, and Colombia), reported as of June 3, and corresponding to samples collected between March and April 2020, were compared through substitution matrices using the Muscle algorithm. Forty-three sequences from 13 Colombian departments were obtained in this study using the Oxford Nanopore and Illumina MiSeq technologies, following the amplicon-based ARTIC network protocol. The substitutions D614G in S and R203K/G204R in N were the most frequent in South America, observed in 83% and 34% of the sequences respectively. Strikingly, genomes with the conserved position D614 were almost completely replaced by genomes with the G614 substitution between March to April 2020. A similar replacement pattern was observed with R203K/G204R although more marked in Chile, Argentina and Brazil, suggesting similar introduction history and/or control strategies of SARS-CoV-2 in these countries. It is necessary to continue with the genomic surveillance of S and N proteins during the SARS-CoV-2 pandemic as this information can be useful for developing vaccines, therapeutics and diagnostic tests.


Subject(s)
Amino Acid Substitution , COVID-19/diagnosis , SARS-CoV-2/classification , Viral Proteins/genetics , Coronavirus Nucleocapsid Proteins/genetics , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , SARS-CoV-2/genetics , Sequence Analysis, RNA , South America , Spike Glycoprotein, Coronavirus/genetics
5.
Infect Genet Evol ; 84: 104390, 2020 10.
Article in English | MEDLINE | ID: covidwho-526657

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 is a public health problem unprecedented in the recent history of humanity. Different in-house real-time RT-PCR (rRT-PCR) methods for SARS-CoV-2 diagnosis and the appearance of genomes with mutations in primer regions have been reported. Hence, whole-genome data from locally-circulating SARS-CoV-2 strains contribute to the knowledge of its global variability and the development and fine tuning of diagnostic protocols. To describe the genetic variability of Colombian SARS-CoV-2 genomes in hybridization regions of oligonucleotides of the main in-house methods for SARS-CoV-2 detection, RNA samples with confirmed SARS-CoV-2 molecular diagnosis were processed through next-generation sequencing. Primers/probes sequences from 13 target regions for SARS-CoV-2 detection suggested by 7 institutions and consolidated by WHO during the early stage of the pandemic were aligned with Muscle tool to assess the genetic variability potentially affecting their performance. Finally, the corresponding codon positions at the 3' end of each primer, the open reading frame inspection was identified for each gene/protein product. Complete SARS-CoV-2 genomes were obtained from 30 COVID-19 cases, representative of the current epidemiology in the country. Mismatches between at least one Colombian sequence and five oligonucleotides targeting the RdRP and N genes were observed. The 3' end of 4 primers aligned to the third codon position, showed high risk of nucleotide substitution and potential mismatches at this critical position. Genetic variability was detected in Colombian SARS-CoV-2 sequences in some of the primer/probe regions for in-house rRT-PCR diagnostic tests available at WHO COVID-19 technical guidelines; its impact on the performance and rates of false-negative results should be experimentally evaluated. The genomic surveillance of SARS-CoV-2 is highly recommended for the early identification of mutations in critical regions and to issue recommendations on specific diagnostic tests to ensure the coverage of locally-circulating genetic variants.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Genome, Viral , Pandemics , Pneumonia, Viral/epidemiology , RNA, Viral/genetics , Viral Proteins/genetics , Base Sequence , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques , Colombia/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Coronavirus Infections/virology , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Molecular Epidemiology , Open Reading Frames , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2 , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL